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A method of analysis of inclined semicircular complex impedance (Z) diagrams for ionic 
conductors has been developed on the basis of the concept of "non-Debye" behaviour of 
solid dielectrics. This approach replaces the rather arbitrary distribution of relaxation 
times by the physically much simpler concept of a frequency-independent ratio of energy 
lost per cycle to energy stored. This criterion of dielectric behaviour leads directly to 
complex admittance (Y) plots in the form of straight lines inclined to the vertical which 
then transform to inclined semicircles in Z. The use of Y diagrams gives better accuracy 
of representation and it is shown how this can be further enhanced by plotting 
log Yi -- log Yr instead of the usual linear representation. Different parts of the graphs are 
assigned to "bulk" and "barrier" regions on the basis of the value of the dielectric 
permittivity and it is shown that a hitherto unrecognized physical process can manifest 
itself as a strong dispersion at frequencies intermediate between the high-frequency bulk 
response and the low-frequency barrier-dominated behaviour. 

1. Introduction 
The complex impedance loci of many ionic solids, 
especially the so-called fast ion conductors, give at 
sufficiently high frequencies well-defined semi- 
circles passing either through or close to the 
origin and having their axes depressed below the 
real axis by an angle ~zr/2, Fig. 1. At lower fre- 
quencies these semicircles go over into what 
appears to be the beginning of another semicircle, 
also inclined to the real axis, although these are 
usually not sufficiently developed in the available 
range of frequencies. 

The inclined semicircular impedance plots are 
commonly, if rather loosely "interpreted" in terms 
of so-called distributions of relaxation times, with 
the angle ~ providing a "measure" of the breadth 
of this distribution [1 -3 ] .  This is done, one 
infers, by analogy with the well-known Cole-Cole 
construction in the complex permittivity plane in 
which the experimental results are approximated 
to by an inclined semicircle, represented by the 
expression [4] : 

e s - -  e =  

e = e + "i + (icoT) 1-c~ (1) 

where e and e s denote, respectively, the high- 
frequency and static values of  e, and r is a 

-Zi 

Z ~ J , ~ , ~  Zs Zr 

Figure 1 Schematic representation of a typical impedance 
diagram of an ionic conductor, showing a semicircular arc 
inclined at an angle aTr/2 and a low-frequency spur which 
may itself be a circular arc and is also inclined. The signifi- 
cance of the parameter v is defined in the text. 
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relaxation time. Equation 1 is said to represent the 
effect of a distribution of relaxation times and the 
parameter a is again taken to measure the breadth 
of this distribution. However, it is not made clear 
by what process the particular form of Equation 1 
is to be derived from a summation of straight semi- 
circles and what physical parameters determine the 
particular distribution to be employed. In fact, 
Equation 1 represents nothing more than the 
mathematical operation of tilting the semicircle 
through the angle a~r/2 and any physical sig- 
nificance of this operation has yet to be estab- 
lished, as was clearly pointed out in the original 
paper [4]. 

It has to be stressed that, despite their geo- 
metrical resemblance, inclined semicircles in the 
e-plane given by Equation 1 and those in the Z- 
plane given by: 

Z = Z r - -  i N  i - Z s - - Z  
1 + (icor) 1-~ (2) 

are in no way equivalent. The definitions of the 
complex impedance, Z, admittance, Y, and per- 
mittivity e being: 

r = 1/Z = icoe. (3) 

It is evident that, while a straight semicircle 
(a = 0) in e transforms into a similar one in Z, 
tilted semicircles will never transform into one 
another. It is not possible, therefore, to interpret 
Equations 1 and 2 in terms of the same physical 
process. 

It is easily shown, with reference to Fig. 1, that 
the magnitude of the parameter v is given by [5] : 

v = IZ l (~ r )  x-~,  (4) 

and this gives a means of determining the fre- 
quency dependence of the impedance. Up to this 
point no mention has been made of any physical 
processes coming into play, the entire analysis 
being purely formal and based on geometrical 
concepts. 

A more specifically physical approach to the 
interpretation of inclined circular arc impedance 
diagrams has been developed by Macdonald in an 
impressive series of papers [6]. Macdonald ascribes 
the entire frequency dependence of the impedance 
data to interfacial processes at electrodes and at 
internal grain boundaries which limit the trans- 
parency of these barriers to different ionic species. 
An extreme case of such limitation is the dif- 
fusive boundary giving rise to the classical Warburg 
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impedance. In Macdonald's analysis the bulk ionic 
conductor has no intrinsic frequency dependence 
of its own and the fitting of experimental data has 
to be achieved by postulating suitable sets of 
barrier parameters, a procedure corresponding 
closely to the fitting of distributions of relaxation 
times described previously. As in the former case, 
it is not easy to judge the physical correctness of 
this procedure in view of the lack of independent 
knowledge of the parameters involved. This 
uncertainty prompts us to present the following 
altogether different approach to the interpretation 
of the complex impedance data, in the hope that it 
may provide a deeper insight into the nature of the 
physical processes involved. 

2. The universal dielectric response 
It has been pointed out elsewhere [7] that the 
tilted impedance semicircles may be more clearly 
understood in terms of the admittance diagram 
which must, by definition, represent a straight line 
inclined at an angle ~7r/2 to the vertical, as shown 
in Fig. 2. This may be considered to represent the 
admittance diagram of a parallel combination of 
an ideal, frequencyqndependent conductance, Gv, 
and a dispersive, frequency-dependent capacitance, 
cn(co): 

Y(~o) = Gv + icoCn(co) (5) 

with Gv = (Z s - - Z ~ )  -1 and C~ given by the 
relation: 

yiJ / By 

-Cn (~) 

~~ n(i ~)n 

gv Yr 

Figure 2 Schematic representation of the admittance Y 
= (Z--Z~) -1 , obtained by inverting the high-frequency 
semicircle in Fig. 1. The effective parallel conductance G v 
and "non-Debye" capacitance Cn(cO ) are shown in the 
equivalent circuit. The dotted line shows a departure from 
the ideal straight line which is discussed in Section 3. 



Cn(oo ) = A n [1 - i cot(nrr/2)] co n-1 l0 9 

= Bn(iOo) n - 1  . (6) 

Here A n and B n = A n / s i n ( r i f t ~ 2 )  are constants 
and we have set the exponent  

n = 1 - - e .  (V) 

It may be noted that  this definition does not 
contain r, the relaxation time, which has no par- 
ticular physical meaning in the present context.  

The point was made [7] that  the capacitance 
Cn which fully accounts for the empirically 
observed shape of  the admittance diagram, has a 
direct relationship to a physically highly signifi- 
cant phenomenon.  It has been shown [8, 9] that 
the dielectric susceptibility, 

X(co) = e(co) --  e= = X'(Co) --  ix"(co), (8) 

o f  a very wide range of  solids follows, over a wide 
range of  frequencies, the "universal" law 

X(CO) = an[1 - - i  cot(nn/2)]  co n-1 , (9) 

implying that the ratio 

X"(Co) _ energy lost per cycle 

X'(Co) energy stored per cycle 

= cot(mr/2).  (10) 

is independent of  frequency. This "non-Debye"  
behaviour is in sharp contrast with the classical 
Debye law for which this ratio is equal to cot. It 
was suggested that  the energy ratio of  Equation I0  
represents a much more significant physical cri- 
terion of  dielectric behaviour than the arbitrary 
and rather vague concept of  distribution of  relax- 
ation times. For a given, empirically determined 
exponent  n, the value of  the ratio of  Equation 10 
is determined uniquely by the universally appli- 
cable Kramers-Kronig  relations. The physical 
basis of  the observed behaviour is seen in many- 
body interactions between dipoles or charges 
which are responsible for the dielectric behaviour 
of  the solid [8]. 

The observed "universal" dielectric response of  
solid materials is thus expressed in terms of  the 
frequency dependence of  the real and imaginary 
parts  of  the complex permittivity: 

e ' ( c o )  = e~ + a n o o  n -~ (11) 

e"(oo) = an co t ( n r r /2 ) co  n - 1  (12) 

\ 

l 

Io9~ 

Figure 3 Logarithmic representation of the frequency 
response of real and imaginary components of the com- 
plex dielectric permittivity for a "non-Debye" dielectric, 
showing the frequency dependence as co n- 1 for e" and 
e'--e=. The low-frequency behaviour of e" may show 
either a loss peak or a steep rise due to d.c. conductivity 
or to other anomalies. The real part e' would corre- 
spondingly show a saturation or a 1/co rise. 

where the constant a n is related to B n in Equation 
6 by: 

B n  = Coan  = ( e o S / w ) a n  (13) 

with Co denoting the geometrical capacitance of 
the sample, e0 the permittivity of  free space, S 
the electrode area and w the sample thickness. The 
dependence of  e' and e" on frequency is shown 
schematically in Fig. 3. In general, the low- 
frequency part of  e"  may show one of two types 
of departure from the ideal graph - either a loss 
peak [10] or a rise proportional to 1/co due to the 
direct current conductivity Co. In our procedure, 

the latter is removed by  the subtraction of the 
conductance G v from the real part of  Y, as will be 
described later. The presence of a loss peak is sel- 
dom evident in experimental results for fast ion 
conductors. 

Any given material may show the presence of  
two or more parallel mechanisms of  the type given 
by Equations 11 and 12, with the attendant loss 
peaks. The resultant permittivity is then given by 
the sum of the individual contributions by the 
separate physical mechanisms responsible for 
dielectric polarization in the medium. The funda- 
mental difference between the present approach 
and the accepted " D e b y e - C o l e - C o l e "  phil- 
osophy, however, is that the latter requires a 
distribution of mechanisms, with suitable relax- 
ation times, to explain every behaviour departing 
from the ideal Debye shape, while the present 
approach interprets a typically observed "flat"  
frequency dependence by a s ingle  mechanism, 
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with one parameter n relating to a wide range of 
frequencies by means of the energy criterion 
which is a direct consequence of Kramers-Kronig 
relations. 

The form of Y given by Equations 5 and 6 is 
now seen as the limiting case applicable when e** 
is negligible in Equation 11. The existence of 
good circular arc Z-plots confirms that this is 
usually a good approximation in a wide range of 
frequencies. A more detailed analysis of cases 
where e= is not negligible will be given below. 

3. Numerical analysis of high-frequency 
data 

We begin by inverting the Z-plot semicircles, using 
appropriate values for Z=, if different from zero. 
This gives an inclined straight line in the admit- 
tance plot, or at least should do so if the high- 
frequency impedance was correctly represented by 
a circular arc. This completely determines the 
parameters Gv and Cn(w ). If  the experimental 
p'oints lie sufficiently close to a straight line, the 
slope of this line is equal to tan (nrt/2) and there- 
fore determines the exponent n in Equation 6. It 
is now instructive to carry out a check of the 
accuracy and consistency of the data by fitting the 
corresponding frequency dependence to the 
admittance, which should follow the relation given 
by Equations 5 and 6: 

Y(w) = Yr + iYi = Gv + Bn(iW) n. (14) 

If  the fit of the frequency points is satisfactory 
then the interpretation is self-consistent. De- 
pending upon the quality and reliability of the 
available experimental data, complications may .., 
arise in their numerical evaluation resulting in 
failure to obtain self-consistent results. 

One obvious source of error is the presence of 
a finite lead inductance, L, in series with the 
specimen. This results in departures from the ideal 
circular arc at the high-frequency end of the 
Z-plot, as shown schematically in Fig. 4, and may 
even lead to a change of sign of Z i. Since these 
departures are equal to coL, it may be possible to 
correct the results if a circular arc can be found 
such that each experimental point can be brought 
on to it by raising vertically by the amount coL. 
This recovers the true sample impedance and 
extends the available range of frequencies for 
which inversion into the Y-plane can now be 
made. A similar type of distortion may arise as a 
result of the presence of a finite stray capacitance 
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Figure 4 The distortion of the true bulk impedance 
response by a stray inductance L in series with the 
sample. It may be possible to reconstruct the semicircle 
by suitable fitting of vertical corrections equal to coL. 

across the measuring resistor which is used to 
calibrate the unknown impedance of the sample. 

There may be other departures from the ideal 
behaviour and these become much more pro- 
nounced in the Y representation than on the 
conventional Z-plots, mainly owing to the fact 
that the eye is much more sensitive to departures 
from a straight line than from a circular arc. 
Conversely, the fitting of a straight line is much 
more positive than that of a circular arc which 
leaves a lot of scope to imagination, as may be 
ascertained by examining some of the published 
data. This is one of the advantages of the admit- 
tance plots. 

Another commonly found difficulty is that 
linear plotting of Yi against Yr results in a wide 
separation of points in the upper range of the 
frequency scale, especially if the measurements are 
taken on a logarithmic frequency scale. This makes 
it difficult to see the results in their entirety and 
the recommended technique is to plot the data in 
a log Yi - log Yr representation [ 11 ].  This im- 
mediately reveals any inconsistencies between 
the high- and the low-frequency ends of the spec- 
trum. In evaluating the logarithmic plots it is well 
to bear in mind that a linear relationship Yi = b Yr 
becomes, in the logarithmic representation, a 
straight line of slope 1 but raised by the factor b 
above the line Yi = Yr, as shown in Fig. 5. In the 
presence of an offset on the linear graph, Yi = 
b ( Y r -  Gv), the logarithmic representation shows 
a rapid drop towards Gv which is then easily 
corrected. 

The principal form of high-frequency departure 
from the ideal relationship of Equation 14, which 
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Figure 5 The logarithmic representation of the complex 
admittance diagram corresponding to the linear represen- 
tation shown in Fig. 2. A much wider range of frequencies 
can now be accommodated making it easier to evaluate 
the consistency of the frequency dependence and the 
value of the parameter e~. 

becomes clear in the logarithmic representation, 
is a steady rise of the experimental plot above the 
ideal line, as shown in Fig. 5. This may be due to 
the increasing importance of the term e= in 
Equation 11 against the diminishing contribution 
of X'(W). The contribution of e= gives rise to a 
difference between the measured values and the 
extrapolated ideal values from Equation 14. 

aY~ = coCoe=. (15) 

A fitting of this difference to the experimental 
data leads directly to the value e=. 

4. Effect of electrode resistance 
Most dielectric samples used for impedance 
measurements have some form of evaporated or 
otherwise applied metallic electrodes which may 
be relatively thin, say, of the order of 1/am or less. 
With samples of high conductance and capacitance 
this may lead to effects which are not negligible 
and which may affect the shape of the charac- 
teristics, giving a false impression of the properties 
of the material in question. 

The effective equivalent circuit is a distributed 
line and the detailed analysis is complicated, 
involving Bessel functions of a complex argument 
which will not be given here. However, in the 
limit of an infinitely large linear (rather than the 
more usual circular) geometry, this effect leads to 
the expression identical to the Warburg 

impedance, i.e. a semicircle depressed by an angle 
7r/4. A distributed line is an exact representation 
of the Warburg diffusive inertia model. 

5. Determination of "volume" permittivity 
Having obtained an admittance diagram which had 
been duly corrected for stray inductance effects 
and which, apart from the e~ rise at high fre- 
quencies, shows a well-defined value of G v and of 
n, it is now possible to claim that this plot rep- 
resents the properties of a homogeneous region of 
the sample. The conductance Gv represents here 
all physical processes giving rise to steady state 
transport of charge from one electrode to the 
other. The "non-Debye" capacitance Cn(co) rep- 
resents the purely dielectric effects present in the 
medium. Since we are dealing with a homogeneous 
medium which will be presumed to be the volume 
of the sample, apart from any thin barrier layers 
in series, it is now permissible to convert to dielec- 
tric permittivity characterizing this medium. In 
this way we obtain for the relative permittivity: 

e ' ( ~ )  = Yi (16)  
cog 

and loss 

e"(co)- r~-Gv (17) 
cog 

and these may be plotted against frequency in the 
manner of Fig. 3 and used in a physical interpret- 
ation of the behaviour of the material - a detailed 
discussion of this aspect of the analysis will be the 
subject of a separate paper. 

The main justification for the identification of 
the e parameters so determined with the bulk or 
volume properties is based on the order of magni- 
tude obtained for the relative permittivity e'. 
Depending on the physico-chemical nature of the 
material, values of e' in the range 20 to 100 would 
be considered eminently reasonable for the bulk 
permittivity. Values in the range 10 3 to lO s have 
been reported and it is tempting to explain them 
in terms of barrier effects but a more detailed 
analysis may be required in specific cases. 

5. Abnormally "high" values of volume 
permittivity 

It may happen that the low-frequency behaviour 
of e' shows a steep rise toward lower frequencies, 
approaching a 1]w dependence. This is not com- 
patible with any simple circuit artefact, nor is 
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Figure 6 (a) Space-charge induced low-frequency rise of e' 
and e", with a "non-Debye" dependence as co e-~ , where 
k ~ 0.1 to 0.2.; (b) The corresponding frequency depen- 
dence of the real and imaginary components of Y. The 
low-frequency behaviour is now "almost" independent of 
frequency and yet does not constitute d.c, (c) The 
complex admittance plot corresponding to (a) and (b). 
The conductance G v would have been deduced from 
experimental data if the low-frequency part were not 
discovered. The intercept G~ may be difficult to deter- 
mine reliably, (d) The effect of the low-frequency space 
charge anomaly on the impedance diagram. The normal 
inclined semicircle may be severely distorted, making it 
impossible to fit a semicircle into the experimental data. 
The effect of a finite G~ is also shown. 
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there at present an accepted physical interpret- 
ation for it. It is sufficient to state here that this 
type of behaviour is observed in different materials 
at sufficiently low frequencies and it may be 
associated with space charge effects arising at the 
electrodes. It is therefore not part of  the genuine 
volume behaviour, but unlike the barrier capaci- 
tive effect, it cannot be readily disengaged from 
the volume properties, which should saturate at a 
finite value of  e(0) at sufficiently low frequencies. 
The effect of this steep rise of  e' at low fre- 
quencies on the admittance and impedance dia- 
grams is easily seen with reference to Fig. 6. 
Diagram (a) represents schematically the log e -  
log co plots showing two regions, the high- 
frequency "non-Debye" region with the familiar 
dependence as co n-1 , n being in the region 0.6 to 
0.8 for typical ionic materials. The e' and e" 
graphs are parallel and separated by the factor 
tan(nrr/2), implying that for n > �89 the real part is 
higher than the imaginary. The onset o f  e~ is 
indicated at high frequencies. At the lower fre- 
quencies, the "dispersive law" co k-1 is indicated, 
with k ~  1, say, typically [11] in the range 0.1 to 
0.2. The relative positions of  e' and e" are now 
reversed, the materials is very '~ with 
tan 6 ~ t. 

Converting these data into the real and imagin- 
ary parts of  the admittance we get the diagram of  
Fig. 6b in which at tow frequencies the real and 
imaginary parts show a slow variation with fre- 
quency. This is in sharp contrast with, on the one 
hand, the properties of  a classical conductor,  for 
which Y~ = Gv is a constant and Yi is zero, and on 
the other hand, the behaviour of  the more familiar 
"non-Debye" capacitor which is represented by 
the steeper lines in the higher frequency region. 
The real part depending on co k now represents a 
"not-quite-constant" conductance, a slowly 
varying or "creeping" d.c. 

We now construct the complex admittance 
diagram, Fig. 6c shown here in linear coordinates. 
This consists of  two straight line portions, with 
the respective inclinations kTr/2 and nTr/2. The low- 
frequency line may define a finite intercept G1, 
indicating the presence of  a true d.c. mechanism, 
although the experimental evidence for this may 
be difficult to determine with certainty - v e r y  
low frequency measurements may be required for 
this purpose. 

We complete our analysis by inverting into the 
Z-plane. The high-frequency behaviour becomes a 



tilted semicircle with the angle of tilt equal to 
( n -  1)zr/2, but the effect of the low-frequency 
behaviour is to give a shallow "spur" to the dia- 
gram which is inclined at an angle krr/2. We note 
that this spur influences the high-frequency 
semicircle over an appreciable range of fre- 
quencies, distorting its shape and converting it 
into a much flatter arc and making it very difficult 
to fit a circular arc to the results, with the conse- 
quent uncertainty as to the value of Go. The effect 
of a finite G1 would be to distort the straight line 
into a very flat circular arc. 

The distortion of Z shown in Fig. 6d would 
arise from the anomalous rise of  e at low fre- 
quencies. As we have pointed out, this is a widely 
observed if little understood phenomenon which 
we attribute to the onset of space charge in the 
material. The physical significance of the high 
values of e' may be easily seen by recalling the 
definition of the polarization as the dipole 
moment per unit volume, 

P = 2 xc~qc~, (18) 
O~ 

where o~ denumerates all charged particles in the 
system, q represents the respective charges and x 
the displacements under an applied electric field. 
If we note that a "typical" molecular displacement 
- of an electron cloud with respect to the nucleus, 
or of  two neighbouring ions with respect to One 
another - in a field of 10 6 V m - :  may be of the 
order 10 .4  nm, it is easily seen that a few inter- 
atomic jumps involving several atomic displace- 
ments (typically 1 nm) may contribute very con- 
siderably to the increase of the polarization and 
hence of the apparent e'. 

The effect described here is therefore not a true 
bulk molecular process; it depends upon transport 
of charges in the system and on the presence of 
incompletely transparent or replenishing elec- 
trodes. The natural limit of this process is the for- 
mation of a fully developed space charge barrier of 
the Schottky type but this may take a few decades 
of frequency. 

It is equally possible, however, that his strong 
low-frequency dispersion may arise from the same 
type of mechanism as that responsible for the 
more usual "universal response" given by Equation 
9 but with a peculiarly low value of the exponent 
n. In our "screened-hopping" model [8] this may 
be due to heavy screening of the jumping charges, 
a situation eminently compatible with a high 

dens:ty of  hopping charge carriers to be expected 
in ionic conductors. This strictly volume process 
has nothing to do with interfacial phenomena and 
should give completely linear response. A detailed 
discussion of these phenomena will form the 
subject of  a separate publication. 

It is important, in any given physical situation, 
to distinguish this phenomenon from the effect of 
the presence of barrier phenomena, to be discussed 
in Section 7 and evidenced by the appearance of a 
sharp minimum in the impedance diagram of 
Fig. 1. As a general rule it may be stated that the 
effect of  the barrier will reflect itself in an upward 
swing of the apparent capacitance in the volume 

region for frequencies up to ten times the fre- 
quency of the minimum in the Z plot. If  sig- 
nificant departures of the type shown in Fig. 6a 
are seen, say, at two decades above the minimum 
frequency, then there exists a reasonable pre- 
sumption that one is dealing with the type of 
behaviour discussed in the present section. 

6. The effect of the presence of a loss peak 
We saw that the effect of a steeply rising loss at 
low frequencies is to distort the Y-diagram in the 
manner shown in Fig. 6c. There are many 
materials, however, in which this effect is not 
seen, for example because there are good replen- 
ishing electrodes, and instead one may find a 
decrease of e" at low frequencies, giving rise to a 
loss peak as shown in Fig. 3. It is easily seen that 
the effect of the presence of a loss peak on the 
Y-diagram would be to distort it in the opposite 
sense, the experimental points following a more 
nearly vertical line to the right of the inclined line 
and defining a higher value of G v. 

7. The appearance of barrier phenomena 
We now return to the discussion of the "classical" 
Z-diagram as represented in Fig. 1, showing at low 
frequencies a "spur" which may be either a 
straight line inclined to the vertical or a similarly 
inclined circular arc. The complete circle is seldom 
revealed in the available frequency ranges. 

The existence of a well-defined "spur" region in 
the Z-plot is clearly identified with a series 
element in the equivalent circuit of  the sample. 
Provided the spur is well separated in frequency 
from the main semicircle; an inversion into the 
admittance plane is possible, taking a suitable 
value of Z s = 1/Gv. The latter would have been 
determined previously from the volume analysis 
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with reasonable accuracy, provided the low- 
frequency e anomaly does not interfere. The new 
"spur" admittance: 

F 

Y = ( z -  1 /av)  -1 = c b  + Bn(iCo) n (19)  

defines a value n'  of  the exponent and a conduc- 
tance G b, in complete analogy with Equation 14 
relating to the bulk behaviour. The numerical 
values of Bn and G b indicate a much higher 
capacitance and lower conductance for this part of 
the characteristic than were obtained for the bulk. 
It is therefore reasonable to identify this part with 
a barrier region in series with the bulk of the 
sample, having geometrical dimensions smaller by 
factors of  10 3 to 10 6 than the volume, on the 
only possible assumption that the absolute value 
of the permittivity is of the same order as for the 
volume. The corresponding conductance is now 
very much lower due to the depletion of available 
free carriers - ions or electrons - from the barrier 
region. 

The barrier effect is therefore clearly an inter- 
facial phenomenon, but whether it arises at the 
electrodes or at internal barriers resulting from the 
presence of grain boundaries, e.g. in a fritted 
ceramic sample, cannot be determined with cer- 
tanty from a.c. data alone. If the sample may be 
presumed to be uniform, e.g. a single crystal or 
a glassy material without clear phase separation 
in the glassy matrix, then electrode effects appear 
very plausible. Here a simple test may consist in 
the variation of the a.c. amplitude or in the 
application of a d.c. bias. Barrier phenomena are 
inherently non-linear and it is to be expected that 
once the voltage per barrier exceeds significantly 
the thermal voltage kT/e, k being Boltzmann's 
constant and T the absolute temperature, non- 
linearity will show in the values of Z. A dramatic 
representation of this was shown for a chal- 
cogenide glass [11] where the barrier collapsed 
completely with increasing voltage. Now if in the 
measurements on a particular sample an a.c. ampli- 
tude of, say, 0.1 to 1 volt does not produce any 
variation of the barrier parameters on the Z dia- 
gram, then these cannot be due to a pair of 
barriers at the electrodes, which would have been 
very non4inear in this range of voltages. The impli- 
cation must be that there are many barriers in the 
system, distributed at internal grain boundaries or 
other inhomogeneities in such a way that the 
actual voltage appearing across each barrier is 

5 6 0  

much less than kT/e leaving it safely in the linear 
region. 

The existence of external or internal barriers is 
inseparable from discontinuities in the flow of 
charges in the system. In the case of ionic con- 
ductors this is a particularly sensitive point, since 
the provision of suitable replenishing, i.e. non- 
blocking electrodes is a relatively much more diffi- 
cult task than in the case of electronic semi- 
conductors. A study of barrier phenomena is 
therefore a valuable means of obtaining infor- 
mation about the nature of the electrode 
behaviour and about the suitability of various 
electrode materials for particular ionic conductors. 
This emphasizes the importance of extending the 
measurements sufficiently far into the low fre- 
quency region which represents the main source of 
experimental information at our disposal. 

We should note that experimental evidence 
points clearly to the "non-Debye" nature of the 
barrier capacitance, although the value of n' may 
differ somewhat from the bulk n. The conser- 
vation of the "non-Debye" property under con- 
ditions where carriers are evidently absent clearly 
points to the existence of separate physical pro- 
cesses respectively giving rise to the d.c. con- 
duction and to the polarization in these ionic 
materials. This must constitute an important 
element in any attempt at physical interpretation 
of the processes governing transport in ionic con- 
ductors. 

It may appear surprising, at first sight, that a 
system consisting of a distribution of internal 
barriers should show the "non-Debye" behaviour, 
as distinct from the classical Maxwell-Wagner 
response normally associated with this type of 
system. There is good experimental evidence to 
suggest that this is not always the case, materials 
which are par excellence granular in nature, such 
as dry and humid sand, showing clearly non-Debye 
behaviour with all the features shown in Fig. 6 
[12]. 

It is worth pointing out that the clear separ- 
ation into bulk and barrier responses as postulated 
in the present section may be seriously distorted 
by the "creeping d.c." effects described in the 
previous section. This may lead to a Z diagram of 
the type shown in Fig. 7 which defines three 
separate regions: the true volume behaviour at 
high frequencies (i), the low frequency barrier 
phenomena (ii), and the intermediate region (iii) 
arising from the e-anomaly. While superficial 
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Figure 7 The distortion of a simple "volume-barrier" 
impedance plot, as shown in Fig. 1, resulting from the 
presence of a low-frequency anomaly in the e' behaviour, 
due to the incipient space charge formation. The volume 
region (i) as now separated from the barrier region Off) 
by the intermediate region (ii) which may completely 
distort the shape of the circular arc. 

analysis might regard regions (i) and (ii) as be- 
longing to the bulk behaviour and might therefore 
derive abnormally high values for the bulk per- 
mittivity, a more detailed analysis as outlined in 
the present paper will avoid this difficulty, by 
recognizing the separate nature of region (ii). 

It may happen that this experiment gives a 
well-behaved impedance plot of the type shown in 
Fig. 1, with clear evidence of a volume and a 
barrier region, but an analysis of e data suggests 
values of e' = 104e0, or even higher. In such cases 
there may be a strong presumption that one is not 
dealing with genuine bulk behaviour, but it is 
important to be cautious in reaching such con- 
clusions. Clearly, if measurements can be made at 
sufficiently high frequencies, it should be possible 
to reach the "true" bulk behaviour. However, this 
is not always possible and another way out may be 
the measurement at sufficiently low temperatures 
which may confirm the high values of permittivity 
as genuine bulk values. This point will be dis- 
cussed in a separate publication. 

We have shown in an early section how the 
presence of a 1/co dependence of the permittivity 
e'(co) may influence the shape of the impedance 
plot in the low-frequency region. The question 
arises to what extent might the presence of this 
1/co anomaly be the result of the proximity of the 
barrier circle, when we evaluate the experimental 
data in the region of the "dip" between the two 
arcs in Fig. 1. In this region we may assume that 

Bncon~Gv  so that the impedance may be 
expressed in the approximate form: 

Z = ( l /Go) [1 - (Bn/av)(ico) n] 
t 

+ (1/B'nXiw) n . 

Assuming for simplicity that the two exponents 
for the bulk and barrier regions are the same, 
n = n ' ,  we obtain the following approximate 
expression for the real component of the apparent 
permittivity in the frequency region corresponding 
to the transition between the barrier and bulk 
responses: 

e'(CO) = an en-1 +,",2,t.rv/a n' COn+I (20) 

The first term of this is just the contribution of 
the volume permittivity, while the second term 
shows a frequency dependence of the type co -n -  1 
which is much steeper than 1/co. There should 
therefore be no risk of confusion between this 
phenomenon and the anomalous 1/co dependence 
described earlier. 

8. Conclusions 
We have shown how the concept of "non,Debye" 
response of solid dielectrics, based on an almost 
universal behaviour of a very wide range of 
materials, may be applied to the analysis of the 
impedance diagrams for ionic conductors. A 
number of complicating features often found in 
experimental results, such as the effects of stray 
inductances, electrode resistance, as well as more 
subtle departures from ideal behaviour are dis- 
cussed in detail. It is shown that the admittance 
diagram represents a much more sensitive tool for 
the interpretation of data and that it reveals 
important features which may go unnoticed on the 
impedance plots. 

In accepting the "non-Debye" interpretation 
we move away from the conventional analysis in 
terms of distributions of Debye-like parameters, 
which is arbitrary and cannot be substantiated by 
independently obtained evidence. We are also 
departing from the alternative widely accepted 
approach ascribing the shape of the Z-diagram 
entirely to transmission characteristics of inter- 
facial barriers which, while plausible in itself, 
cannot be considered to be proved to be correct. 
Instead we are able to show that the experimental 
results indicate definite common features between 
the behaviour of ionic conductors and that of 
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other dielectrics, features which we ascribe to 
many-body interactions resulting in partial 
screening of dipoles and of charges present in the 
system [8]. This will give us valuable clues with 
regard to the nature of the transport processes in 
these solids. 

We are able to separate d.c. conduction pro- 
cesses involving continuous transport from one 
electrode to the other, from distinctly a.c. or 
dielectric effects which show certain well-defined 
characteristics. The appearance of anomalously 
high values of permittivity is explained in terms of 
a phenomenon of "incipient" space charge for- 
mation, which precedes the development of a full 
barrier. Alternatively, it may arise from certain 
peculiarities of the screening of charge carriers, 
resulting in particularly low values of the exponent 
n in the "universal" response law. Either gives rise 
in the impedance diagram to a slow transition 
between the bulk semicircle and the barrier spur, 
resulting in a significant flattening of the 
impedance plot which makes it difficult to "fit" 
semicircles into the data. 

Our immediate physical conclusions with regard 
to the nature of the transport mechanisms in fast 
ionic conductors may be stated as follows. The 
"non-Debye" nature of both bulk and barrier 
characteristics suggests that the conducting species 
moving by discontinuous jumps interact with one 
another in a manner demanded by the "screened 
hopping" mechanism of the "non-Debye" analysis 
[8]. This contradicts the concept of "free ion" 
conduction proposed by Rice and Roth [13] but 
is compatible with a model of  "cooperative" 
hopping" recently proposed by Wang et al [14]. A 
more detailed study of experimental data for a 
wide range of three- , two- and one-dimensional 
ionic conductors, which all show essentially similar 

"non-Debye" behaviour, should help to develop 
further the theoretical model and provide a better 
insight into the nature of transport processes in 
ionic conductors. 
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